Random Forest - Python Code
import pandas as pd
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score,classification_report
data = {
'CGPA': ['>=9', '<9', '>=9', '<9', '>=9'],
'Interactivity': ['Yes', 'No', 'No', 'No', 'Yes'],
'Comm': ['Good', 'Moderate', 'Moderate', 'Moderate', 'Moderate'],
'Practical': ['Good', 'Good', 'Average', 'Average', 'Average'],
'JobOffer': ['Yes', 'No', 'Yes', 'No', 'Yes']
}
df=pd.DataFrame(data)
df.replace({'>=9':1,'<9':0,'Yes':1,'No':0,'Good':1,'Moderate':0,'Average':0},inplace=True)
X=df.drop('JobOffer',axis=1)
y=df['JobOffer']
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=42)
model=RandomForestClassifier()
model.fit(X_train,y_train)
y_pred=model.predict(X_test)
print("Accuracy:", accuracy_score(y_test,y_pred))
print("Report:", classification_report(y_test,y_pred))
Comments